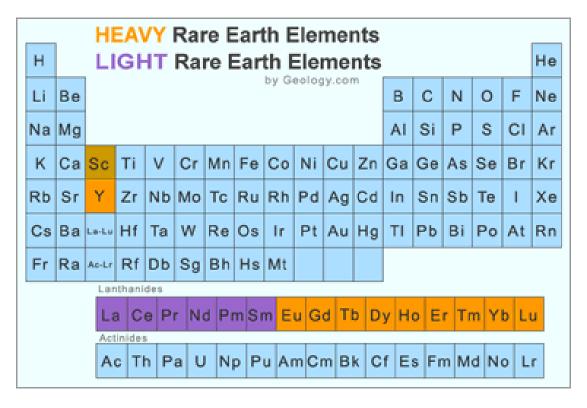


REE in world economy, the relation of REE and bauxite residues (BR's), and a new technical

procedure to separate the REE's

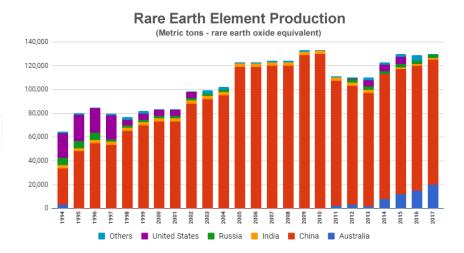
DMT GmbH & Co. KG


Regional Innovation Scheme

EurGeol. Dr. Hartwig Gielisch Student Workshop Ježevići I 15th October 2019

Rare-Earth Elements

- •RE = rare earth
- •REM = rare-earth metals
- •REE = rare-earth elements
- •REO = rare-earth oxides
- •REY = rare-earth elements and yttrium
- •LREE = light rare-earth elements
- •HREE = heavy rare-earth elements


COMMODITIES OCTOBER 24, 2018 / 7:22 PM / 4 MONTHS AGO

China cutting rare earth output, unnerving global manufacturers

Barbara	Lewis.	Ernest	Schevder	
Daibaia	LC W13,	LINCSC	Deneyaer	

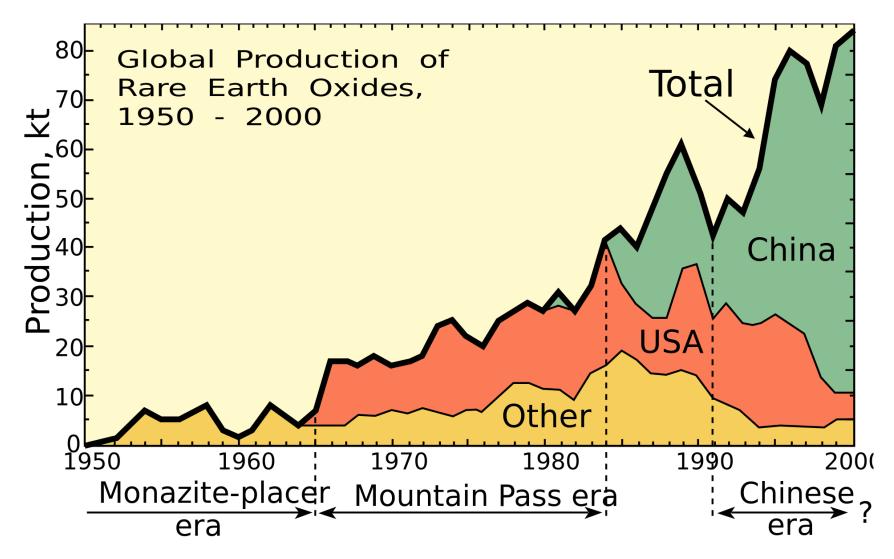
6 MIN R	EAD	У	f
		-	

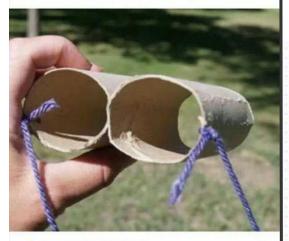
LONDON/HOUSTON (Reuters) - The Chinese government is limiting domestic production of rare earth minerals in the second half of the year, a move likely to crimp international exports and send prices for the critical materials higher, according to data from Adamas Intelligence.

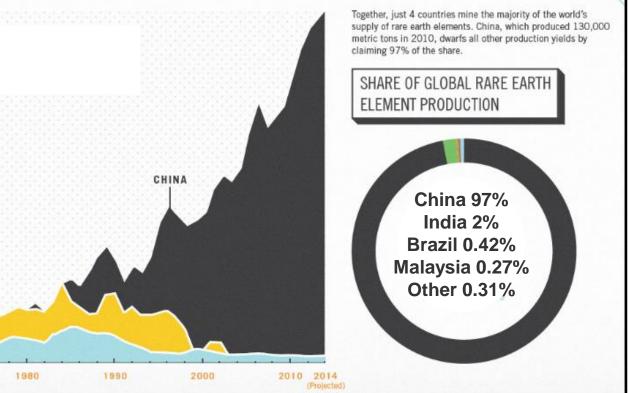
The Chinese dominance may have peaked in 2010 when they controlled about 95% of the world's rare earth production, and prices for many rare earth oxides had risen over **500%** in just a few years. The rare earths trade dispute, between China on one side and several countries led by the US on the other, was over China's export restrictions on rare earth elements as well as Tungsten and Molybdenum, which are used to make many electronics.

RMB/mt1 Euro = ¥ 7.68 Renminbimetric tonqual to 1,000 kg

	Products	Prices	Average	Change	Unit	Date
La	Lanthanum Oxide	14000 - 15000	14500	0	RMB/mt	2018-06-26
Ce	Cerium Oxide	14000 - 15000	14500	0	RMB/mt	2018-06-26
Nd	Neodymium Oxide	335000 - 340000	337500	٥	RMB/mt	2018-06-26
Pr	Praseodymium Oxide	420000 - 430000	425000	0	RMB/mt	2018-06-26
Tb	Terblum Oxide	3050 - 3100	3075	0	RMB/kg	2018-06-26
Dy	Dysprosium Oxide	1165 - 1175	1170	0	RMB/kg	2018-06-26
Eu	Europlum Oxide	380 - 400	390	0	RMB/kg	2018-06-26
Yt	Yttrium Oxide	20000 - 21000	20500	0	RMB/mt	2018-06-26
Di	Didymium Oxide	340000 - 345000	342500	0	RMB/mt	2018-06-26
Sm	Samarium Oxide	13000 - 14000	13500	0	RMB/mt	2018-06-26
Gd	Gadolinium Oxide	135000 - 140000	137500	0	RMB/mt	2018-06-26
Er	Erbium Oxide	165000 - 170000	167500	0	RMB/mt	2018-06-26


2000 € per ton 2000 € per ton 44270 € per ton 55600 € per ton 400 € per ton 156 € per ton 52 € per ton 2750 € per ton 45000 € per ton 1825 € per ton 18250 € per ton 22200 € per ton





My 7 year-old nephew just came to me and said, "Look, I made some binculars!"

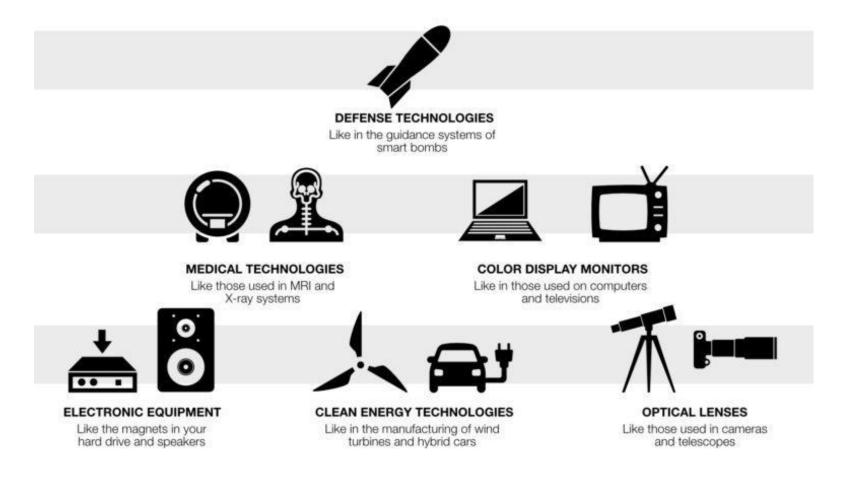
I said to him, "That's nice, but look what kids your age are making in China."

The Chinese monopoly on REE

Today China controls 97% of the production of Rare Earth elements. In 2012, the Obama administration filed a case with the Dispute Settlement Body of the WTO. In 2014, the WTO ruled against China, which led China to drop the export quotas in 2015.

Z \$	Symbol \$	Name 🕈	Etymology	Selected applications	Abundance ^[5] (ppm ^[a]) €
21	Sc	Scandium	from Latin Scandia (Scandinavia).	Light aluminium-scandium alloys for aerospace components, additive in metal-halide lamps and mercury-vapor lamps, ^[6] radioactive tracing agent in oil refineries	22 ^[7]
39	Y	Yttrium	after the village of Ytterby, Sweden, where the first rare earth ore was discovered.	Yttrium aluminium garnet (YAG) laser, yttrium vanadate (YVO4) as host for europium in television red phosphor, YBCO high- temperature superconductors, yttria-stabilized zirconia (YSZ), yttrium iron garnet (YIG) microwave filters, ^[6] energy-efficient light bulbs (part of triphosphor white phosphor coating in fluorescent tubes, CFLs and CCFLs, and yellow phosphor coating in white LEDs), ^[6] spark plugs, gas mantles, additive to steel, cancer treatments	33 ^[7]
57	La	Lanthanum	from the Greek "lanthanein", meaning to be hidden.	High refractive index and alkali-resistant glass, flint, hydrogen storage, battery-electrodes, camera lenses, fluid catalytic cracking catalyst for oil refineries	39 ^[7]
58	Се	Cerium	after the dwarf planet Ceres, named after the Roman goddess of agriculture.	Chemical oxidizing agent, polishing powder, yellow colors in glass and ceramics, catalyst for self-cleaning ovens, fluid catalytic cracking catalyst for oil refineries, ferrocerium flints for lighters	66.5 ^[7]
59	Pr	Praseodymium	from the Greek "prasios", meaning <i>leek-green</i> , and "didymos", meaning <i>twin</i> .	Rare-earth magnets, lasers, core material for carbon arc lighting, colorant in glasses and enamels, additive in didymium glass used in welding goggles, ^[0] ferrocerium firesteel (flint) products.	9.2 ^[7]
60	Nd	Neodymium	from the Greek "neos", meaning <i>new</i> , and "didymos", meaning <i>twin</i> .	Rare-earth magnets, lasers, violet colors in glass and ceramics, didymium glass, ceramic capacitors, electric motors of electric automobiles	41.5 ^[7]
61	Pm	Promethium	after the Titan Prometheus, who brought fire to mortals.	Nuclear batteries, luminous paint	1 × 10 ^{-15[9][b]}
62	Sm	Samarium	after mine official, Vasili Samarsky- Bykhovets.	Rare-earth magnets, lasers, neutron capture, masers, control rods of nuclear reactors	7.05 ^[7]
63	Eu	Europium	after the continent of Europe.	Red and blue phosphors, lasers, mercury-vapor lamps, fluorescent lamps, NMR relaxation agent	2 ^[7]
64	Gd	Gadolinium	after Johan Gadolin (1760–1852), to honor his investigation of rare earths.	High refractive index glass or garnets, lasers, X-ray tubes, computer memories, neutron capture, MRI contrast agent, NMR relaxation agent, magnetostrictive alloys such as Galfenol, steel additive	6.2 ^[7]
65	Tb	Terbium	after the village of Ytterby, Sweden.	Additive in Neodymium based magnets, green phosphors, lasers, fluorescent lamps (as part of the white triband phosphor coating), magnetostrictive alloys such as terfenol-D, naval sonar systems, stabilizer of fuel cells	1.2 ^[7]
66	Dy	Dysprosium	from the Greek "dysprositos", meaning hard to get.	Additive in Neodymium based magnets, lasers, magnetostrictive alloys such as terfenol-D, hard disk drives	5.2 ^[7]
67	Ho	Holmium	after Stockholm (in Latin, "Holmia"), native city of one of its discoverers.	Lasers, wavelength calibration standards for optical spectrophotometers, magnets	1.3 ^[7]
68	Er	Erbium	after the village of Ytterby, Sweden.	Infrared lasers, vanadium steel, fiber-optic technology	3.5 ^[7]
69	Tm	Thulium	after the mythological northern land of Thule.	Portable X-ray machines, metal-halide lamps, lasers	0.52 ^[7]
70	Yb	Ytterbium	after the village of Ytterby, Sweden.	Infrared lasers, chemical reducing agent, decoy flares, stainless steel, stress gauges, nuclear medicine, monitoring earthquakes	3.2 ^[7]
71	Lu	Lutetium	after Lutetia, the city that later became Paris.	Positron emission tomography – PET scan detectors, high-refractive-index glass, lutetium tantalate hosts for phosphors, catalyst used in refineries, LED light bulb	0.8 ^[7]
	Rare-earth element Scheme From Wikipedia, the free encyclopedia				

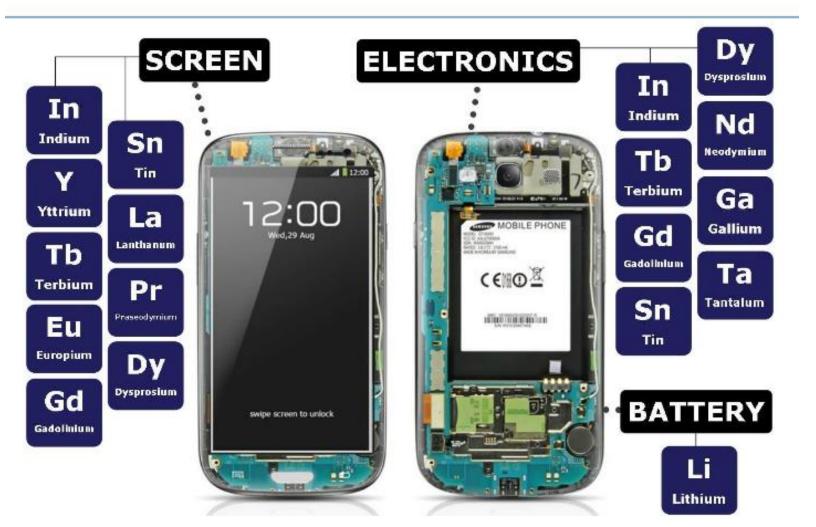
Rare-earth element


Scheme

From Wikipedia, the free encyclopedia

HOW DO WE USE RARE EARTH ELEMENTS?

About 140,000 tons of rare earth elements are processed each year to create a wide variety of technological devices. Below are some examples.


Source: U.S. Geological Survey Graphic by Alexandra Kanik

Regional Innovation Scheme

Rare Metals in a smart phone

Defense One NEWS THREATS POLITICS BUSINESS TECH IDEAS

China Is Beating the US in the Rare-Earths Game

AA FONT SIZE + PRINT

f

(III)

EBENART/SHUTTERSTOCK -

BY JAMES KENNEDY JAMES KENNEDY IS PRESIDENT OF THREE CONSULTING.

READ BIO .

NOVEMBER 8, 2018

It's time for the administration to use its powers to preserve America's access to vital defense materials.

Defense Uses of Rare Earth Elements				
Lanthanum	n night-vision goggles			
Neodymium	laser range-finders, guidance systems, communications			
Europium	uropium fluorescents and phosphors in lamps and monitors			
Erbium amplifiers in fiber-optic data transmission				
Samarium permanent magnets that are stable at high temperatures				
Samarium	Samarium precision-guided weapons			
Samarium "white noise" production in stealth technology				

Location of REE occurrences and deposits in Europe

This map shows all the individual examples of REE mineralisation in Europe that were identified by the EURARE project. Zoom in on the map and click on the individual points to identify them. An indication of the scale of the deposit is given on the basis of the following definitions:

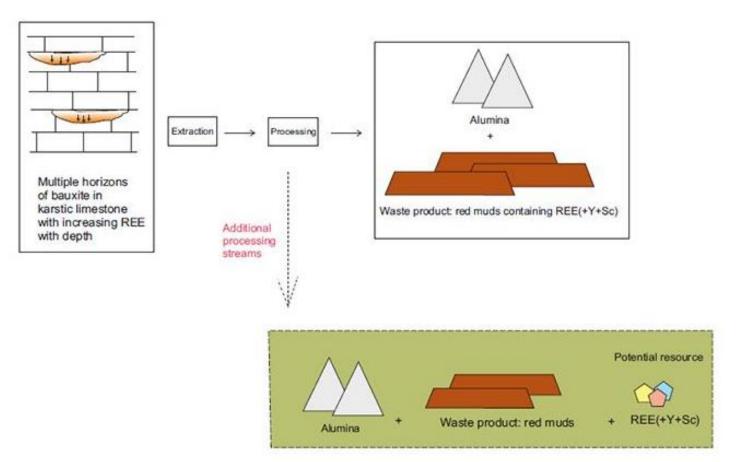
- 1. Resource: REE mineralisation that has a formal resource estimate which is compliant with JORC or a similar code
- 2. Deposit: REE mineralisation for which the available evidence suggests that an economic resource could be identified with further exploration
- 3. Occurrence: REE mineralisation that appears to be localised and is not considered to be of economic interest on the basis of current evidence
- 4. By-product: REE mineralisation that may be economic as a by-product of extraction of other minerals.

These classifications may be subject to change as new evidence is gathered.

Key

- : alkaline igneous rocks
- : carbonatite
- : vein and skarn (hydrothermal)
- : iron oxide-apatite
- : granite and pegmatite
- : bauxite
- : placer
- other

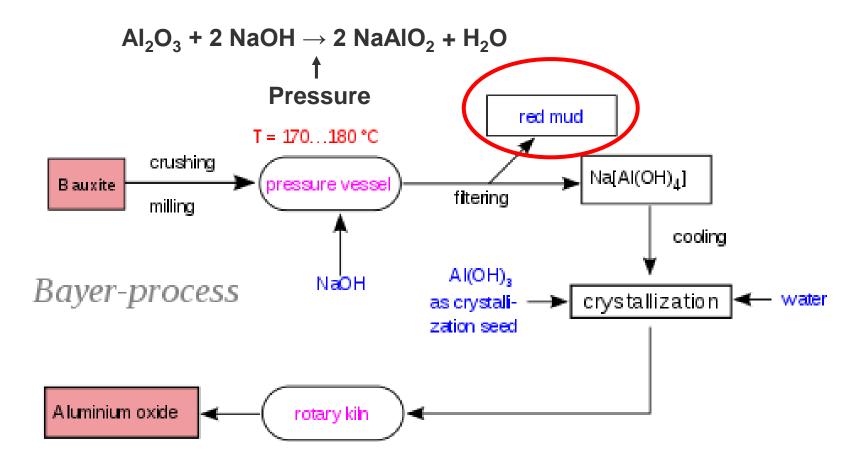
	Karst Bauxite Greece	Lateritic BauxiteGhana	Bauxite ResidueGreece, AoG
Element	ICP-MS	INAA	ICP-MS
	(mg/kg)	(mg/kg)	(mg/kg)
La	57 ± 7	19.1 ± 1.3	130 ± 1
Ce	206 ± 8	34 ± 1	480 ± 26
Pr	15 ± 1	n/a	29 ± 2
Nd	53 ± 6	13 ± 1	107 ± 0
Sm	9.8 ± 1.0	2.0 ± 0.2	19.4 ± 0.2
Eu	2.4 ± 0.9	0.8 ± 0.2	4.6 ± 1.1
Gd	10.6 ± 0.6	n/a	22.0 ± 0.3
Тb	2.3 ± 0.5	< 0.5	3.3 ± 0.0
Dy	9.8 ± 0.3	n/a	20.1 ± 0.1
Ho	2.1 ± 0.1	n/a	4.1 ± 0.1
Er	7.2 ± 0.8	n/a	13.3 ± 0.3
Tm	<2	n/a	<2
Yb	7.0 ± 0.4	2.5 ± 0.3	13.8 ± 0.3
Lu	<2	0.4 ± 0.0	2.2 ± 0.0
Y	48 ± 2	n/a	108 ± 2
Nb	55 ± 9	n/a	100 ± 1
Th	51 ± 2	22.7 ± 2.3	105 ± 2
Σ Ln ¹	382.3		854.4
ΣREE^{2}	430.6		962.5


Table 3. Trace element composition of the samples. Error is given as one standard deviation of a duplicate measurement.

¹ Sum of lanthanides; ² Sum of lanthanides and yttrium.

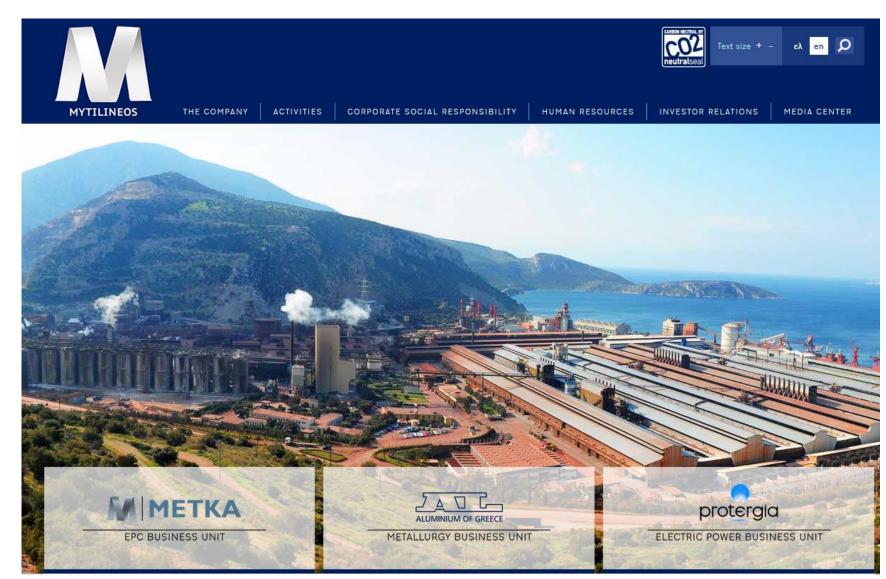
Rare Earth Element Phases in Bauxite Residue Johannes Vind et al. 2018

Regional Innovation Scheme



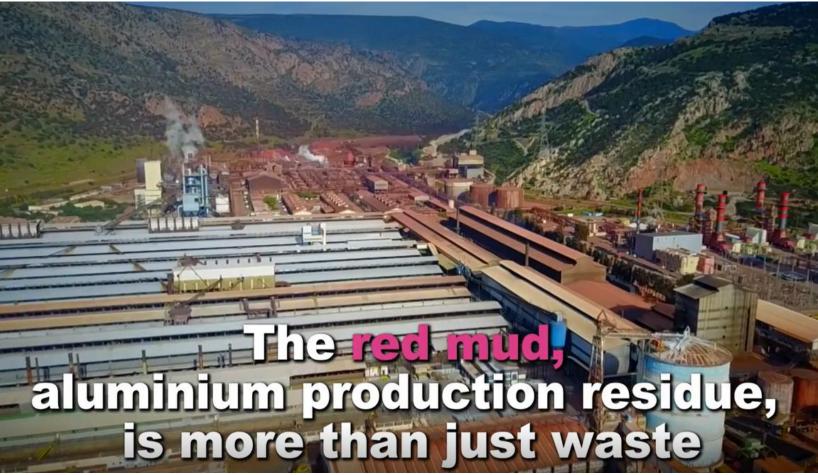
Simplified overview of the alumina processing stream. The development of an additional processing stream for the extraction of REE from red muds could lead to European production of REE.

The Bayer-Process in the prossesing of Aluminium ore



This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

 $AI_2O_3 + 2 \text{ NaOH} \rightarrow 2 \text{ NaAIO}_2 + H_2O$



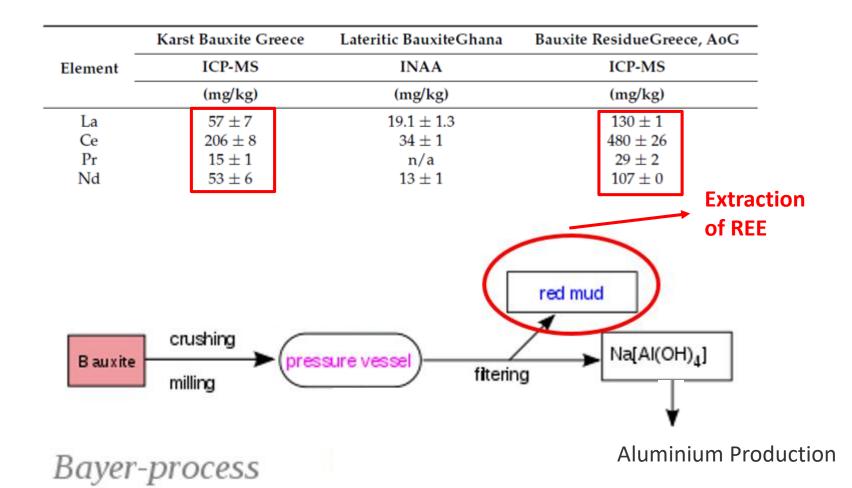
The red mud, aluminium production residue, is more than just waste

It contains iron, titanium, silicon, rare earth metals and scandium

This aluminium plant in Greece produces 2 thousand tons of red mud every day

With current technologies, metals extraction from red mud is not economically viable

This pilot plant uses ionic liquid to extract rare earth elements from red mud


Research like this can turn today's waste into tomorrow's treasure!

The concentration of REE during the Bayer-Process

REE Extraction using Ionic Liquids (IL)

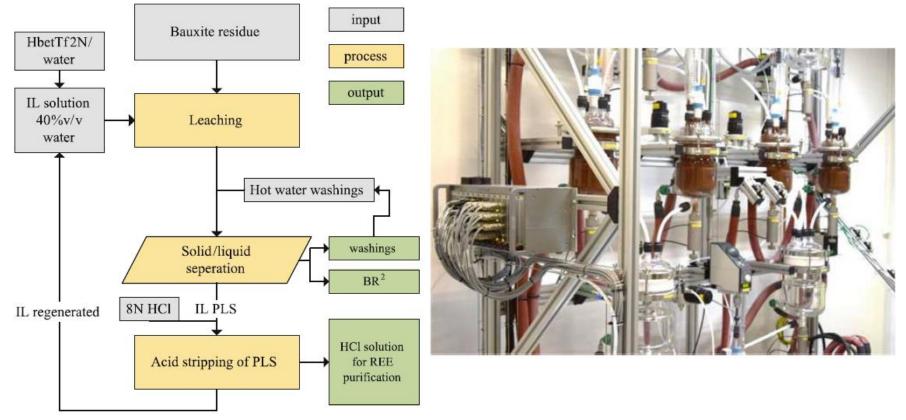


Fig. 7 BR flowsheet treatment with HbetTf2N to produce a final REE solution and regenerate the IL for reuse (left). Demonstration of the proposed flowsheet to a mini pilot plant built in Athens (right)

Developing New Process for Selective Extraction of Rare Earth Elements from Bauxite Residue Based on Functionalized Ionic Liquids - Panagiotis Davris, Efthymios Balomenos, Dimitrios Panias, and Ioannis Paspaliarls (0. Martin (ed.), Light Metals 2018, The Minerals, Metals & Materials Series, https://doi.org/10.10071978-3-319-72284-9_20

eit.europa.eu

Thank you for your attention

The EIT is a body of the European Union