Geochemical interpretation of sequential extraction results from the Ajka Bauxite-Residue

FERENC MÓRICZ

Institute of Mineralogy and Geology, University of Miskolc, Hungary

2nd REEBAUX workshop

2020. October 16-17.

Content

- Sequential extraction methods in general
- Overview of the different types of sequential extraction methods
- Presentation of the applied method
- Characterization of the choosen samples
- Interpretation of the result from the analysis
- Conclusion

Sequential extraction methods in general

- Nowadays, it is one of the most commonly used geochemical analysis near the pH dependent test, although it is more expensive.
- Sequential extraction method was established several decades ago in order to evaluate trace element availability (originally) in soil.
- By time it proved the applicability in case of rocks as well.
- It is a perfect geochemical tool to detect which is that mineral phase or group where the searched element is bounded.
- From the first one, more generations of the test are invented.

Sequential extraction methods

Tessier type 5 steps (1979)

- Exchangeable fraction
- Bound to carbonates
- Bound to Fe-Mn oxides
- Bound to organics matter
- Residual

BCR type 3 steps (1993) /by Standards, Measurement and Testing Programme; formerly BCR/

- Exchangeable fraction
- Metals bound to Fe-Mn oxides
- Metals bound to organics matter and sulphides
- Residual

Sequential extraction methods

- Dold type 7 steps (2001)
 - Water soluble fraction
 - Exchangeable fraction
 - Fe^{III} oxyhydroxides
 - Fe^{III} oxides
 - Organics and secondary (Cu) sulphides
 - Primary sulphides

Residual

Sequential extraction methods

Tessier type (1979) method modified by Gu et al. (2018)

- Water soluble fraction
- Exchangeable fraction
- Bound to carbonates
- Bound to Fe-Mn oxides
- Bound to organics
- Residual

Gu, H., Wang, N., Hargreaves, J. S. J. (2018): Sequential extraction of valuable trace elements from <u>Bayer process-derived waste red mud samples</u>. Journal of Sustainable Metallurgy, Vol. 4, pp. 147-154.

Our choice: Gu et al. (2018) method

But why?

- It is specified for red mud (pH 13-14), as the residual of the Bayer process.
- It has good mineral phase separation because of:
 - the large number of the steps
 - the selectively choosen chemicals let better detection of the mineral groups
 - compare to "old" Tessier or BCR method, in them some steps leach out more than one mineral phase in the same step
 - Dold method has the same separation but it is invented for Cu minerals
 - Key answers: 1, good separation of the phases; 2, specified for red mud

Method has already chosen, but which sample(s) will be analized from the 41 species?

- Cannot forget: 1 sample = 5-times leaching process (time consuming),
 5 leachate and 5 residual material.
- Based on the chemical and mineralogical results, the cell VIII. was chosen in a vertical set of the top 5 spieces, which mean samples from depth of 1, 2, 3, 4 and 5 m.
 - 20-times test size enlargement was applied, as intsead of 3 g, the starting amount was modified to 60 g of the sample.

The same enlargement was used also for the amounts to the reagents.

Mineralogical composition of the chosen samples

Based on these mineralogical results, the Gu et al. (2018) method can be a good choice. Theoretically there should have no overlapping of dissolution of the similar mineral group in the

same step.

Sample *		50	51	52	53	54
Sampling depth (m)		1	2	3	4	5
Hematite	Fe ₂ O ₃	35.2	34.8	34.9	35.6	37
Cancrinite	Na ₆ Ca ₂ Al ₆ Si ₆ O ₂₄ (CO ₃) ₂	17.1	9.1	19.9	22.2	18.4
Gibbsite	AI(OH) ₃	5.1	3.0	1.7	2.2	1.2
Calcite	CaCO3	6.6	12.0	7.5	10.3	9.6
Dolomite	CaMg(CO ₃) ₂	0.8	2.0	0.9	0.0	1.4
Katoite	$Ca_3Al_2(SiO_4)_{1.5}(OH)_6$	2.5	1.2	4.2	3.0	2.3
Goethite	FeOOH	16.6	19.3	12.0	3.7	7.2
Boehmite	AIOOH	1.4	2.7	1.4	0.7	2.3
Quartz	SiO ₂	0.5	0.4	0.5	0.5	0.2
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	1.9	0.8	0.6	2.2	0.7
Cancrinite (OH)		2.8	1.8	1.8	3.6	2.7
Amorphous		8.4	12.0	13.3	14.6	15.5
Others**		1.1	0.7	1.3	1.4	1.5

* The unit is given in m/m%.

** Total of hibschite, anatase, diaspore, manganosite and aragonite.

SE results from the residuals

- Three trend line can be read out:
- <u>Upper zone (sample 50 and 51; 1 & 2 m)</u>
 - Decreasing REEs content => dissolving
 - REEs bound mainly to carbonates and Fe phases
- Middle zone (sample 52; 3 m)
 - Stable REEs content => partly dissolving
 - The dissolving REEs keep balance with the eprichment effect in the residual.
 - Lower zone (sample 53 and 54; 4 & 5 m)
 - Increasing REEs content => higher the enrichment effect than the dissolution rate
 - REEs bound mainly to REE phosphates or silicates

Conclusion

After literature work, proper sequential extraction method was chosen.

- From the 41 species of the red mud samples, 5 were chosen after checking the chemical and mineralogical compositions of them.
- Near the difficulties of the samples, the test was prosperous.
- From the result of the sequential extraction and from the trend lines of the changes of the REEs three type of zones were established.
- At the top, the REEs dominantly bound to the carbonate and Fe phases, while in lower they are dominantly in the phosphate and silicate phases.

Thank you for your kind attention!